1,896 research outputs found

    Origin of Cosmic Magnetic Fields

    Get PDF
    We propose that the overlapping shock fronts from young supernova remnants produce a locally unsteady, but globally steady large scale spiral shock front in spiral galaxies, where star formation and therefore massive star explosions correlate geometrically with spiral structure. This global shock front with its steep gradients in temperature, pressure and associated electric fields will produce drifts, which in turn give rise to a strong sheet-like electric current, we propose. This sheet current then produces a large scale magnetic field, which is regular, and connected to the overall spiral structure. This rejuvenates the overall magnetic field continuously, and also allows to understand that there is a regular field at all in disk galaxies. This proposal connects the existence of magnetic fields to accretion in disks. We not yet address all the symmetries of the magnetic field here; the picture proposed here is not complete. X-ray observations may be able to test it already.Comment: 18 pages, no figures; to be published in Proc. Palermo Meeting Sept. 2002, Eds. N. G. Sanchez et al., The Early Universe and the Cosmic Microwave Background: Theory and Observation

    Outstanding Issues in Solar Dynamo Theory

    Full text link
    The magnetic activity of the Sun, as manifested in the sunspot cycle, originates deep within its convection zone through a dynamo mechanism which involves non-trivial interactions between the plasma and magnetic field in the solar interior. Recent advances in magnetohydrodynamic dynamo theory have led us closer towards a better understanding of the physics of the solar magnetic cycle. In conjunction, helioseismic observations of large-scale flows in the solar interior has now made it possible to constrain some of the parameters used in models of the solar cycle. In the first part of this review, I briefly describe this current state of understanding of the solar cycle. In the second part, I highlight some of the outstanding issues in solar dynamo theory related to the the nature of the dynamo α\alpha-effect, magnetic buoyancy and the origin of Maunder-like minima in activity. I also discuss how poor constraints on key physical processes such as turbulent diffusion, meridional circulation and turbulent flux pumping confuse the relative roles of these vis-a-vis magnetic flux transport. I argue that unless some of these issues are addressed, no model of the solar cycle can claim to be ``the standard model'', nor can any predictions from such models be trusted; in other words, we are still not there yet.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    An overview of flux braiding experiments

    Get PDF
    Parker has hypothesised that, in a perfectly ideal environment, complex photospheric motions acting on a continuous magnetic field will result in the formation of tangential discontinuities corresponding to singular currents. We review direct numerical simulations of the problem and find the evidence points to a tendency for thin but finite thickness current layers to form, with thickness exponentially decreasing in time. Given a finite resistivity these layers will eventually become important and cause the dynamical process of energy release. Accordingly, a body of work focusses on evolution under continual boundary driving. The coronal volume evolves into a highly dynamic but statistically steady state where quantities have a temporally and spatially intermittent nature and where the Poynting flux and dissipation are decoupled on short timescales. Although magnetic braiding is found to be a promising coronal heating mechanism much work remains to determine its true viability. Some suggestions for future study are offered.Comment: 11 figures, 23 pages. To be published in Philosophical Transactions A (2015

    Signatures of Coronal Heating Mechanisms

    Full text link
    Alfven waves created by sub-photospheric motions or by magnetic reconnection in the low solar atmosphere seem good candidates for coronal heating. However, the corona is also likely to be heated more directly by magnetic reconnection, with dissipation taking place in current sheets. Distinguishing observationally between these two heating mechanisms is an extremely difficult task. We perform 1.5-dimensional MHD simulations of a coronal loop subject to each type of heating and derive observational quantities that may allow these to be differentiated.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Yoshizawa's cross-helicity effect and its quenching

    Full text link
    A central quantity in mean-field magnetohydrodynamics is the mean electromotive force EMF, which in general depends on the mean magnetic field. It may however have a part independent of the mean magnetic field. Here we study an example of a rotating conducting body of turbulent fluid with non-zero cross-helicity, in which a contribution to the EMF proportional to the angular velocity occurs (Yoshizawa 1990). If the forcing is helical, it also leads to an alpha effect, and large-scale magnetic fields can be generated. For not too rapid rotation, the field configuration is such that Yoshizawa's contribution to the EMF is considerably reduced compared to the case without alpha effect. In that case, large-scale flows are also found to be generated.Comment: 10 pages, 8 figures, compatible with published versio

    Solar-type dynamo behaviour in fully convective stars without a tachocline

    Get PDF
    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016). Author's version, including Method

    Chandrasekhar-Kendall functions in astrophysical dynamos

    Full text link
    Some of the contributions of Chandrasekhar to the field of magnetohydrodynamics are highlighted. Particular emphasis is placed on the Chandrasekhar-Kendall functions that allow a decomposition of a vector field into right- and left-handed contributions. Magnetic energy spectra of both contributions are shown for a new set of helically forced simulations at resolutions higher than what has been available so far. For a forcing function with positive helicity, these simulations show a forward cascade of the right-handed contributions to the magnetic field and nonlocal inverse transfer for the left-handed contributions. The speed of inverse transfer is shown to decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary Conference, to be published in PRAMANA - Journal of Physic

    Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption

    Full text link
    Explosive energy release is a common phenomenon occurring in magnetized plasma systems ranging from laboratories, Earth's magnetosphere, the solar corona and astrophysical environments. Its physical explanation is usually attributed to magnetic reconnection in a thin current sheet. Here we report the important role of magnetic flux rope structure, a volumetric current channel, in producing explosive events. The flux rope is observed as a hot channel prior to and during a solar eruption from the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamic Observatory (SDO). It initially appears as a twisted and writhed sigmoidal structure with a temperature as high as 10 MK and then transforms toward a semi-circular shape during a slow rise phase, which is followed by fast acceleration and onset of a flare. The observations suggest that the instability of the magnetic flux rope trigger the eruption, thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure
    • 

    corecore